Affinity Chromatography (AC)

Affinity Chromatography (AC)

- Principles of AC
- Main stages in Chromatography
- How to prepare Affinity gel Ligand Immobilization Spacer arms –
 Coupling methods Coupling tips
- Types of AC
- Flution Conditions
- Binding equilibrium, competitive elution, kinetics
- Industrial Examples: Protein A/G for Therapeutic proteins
- Future Considerations

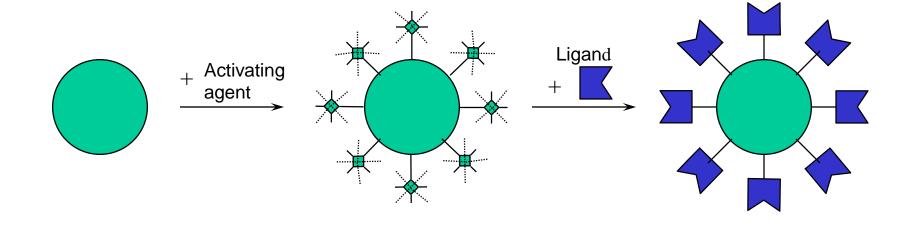
What is affinity chromatography?

- ➤ Affinity chromatography is a technique of liquid chromatography which separates molecules through biospecific interactions.
- The molecule to be purified is specifically and reversibly adsorbed to a specific ligand
- The ligand is immobilized to an insoluble support ("matrix"): resin, "chip",
- Elisa plate, membrane, Western, IP (immuneprecipitation), etc
- Introduction of a "spacer arm" between the ligand and the matrix to improve binding
- ➤ Elution of the bound target molecule
 - a) non specific or
 - b) specific elution method

What is it used for?

- > Monoclonal and polyclonal antibodies
- > Fusion proteins
- > Enzymes
- ➤ DNA-binding proteins

> ANY protein where we have a binding partner!!


Designing and preparing an affinity gel

Choosing the matrix

Designing the ligand - Spacer arms

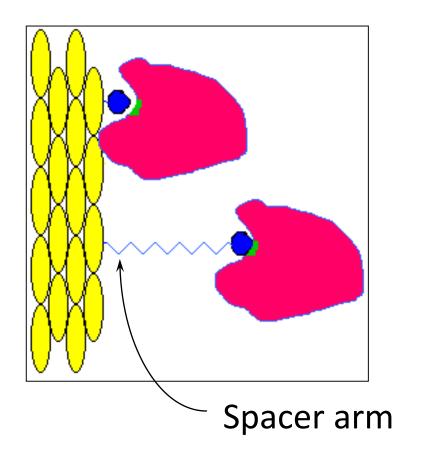
Coupling methods

Ligand Immobilization

Matrix

Activated matrix

Immobilised ligand


Designing the ligand

Essential ligand properties: interacts selectively and reversibly with the target

➤ Carries groups which can couple it to the matrix without losing its binding activity

> Available in a pure form

Steric considerations & spacer arms

√ Small ligand (<1,000)
</p>

Risk of steric interference with binding between matrix and target molecule

✓ Often need spacer arm

✓ but watch out for adsorption to the spacer!

Design of spacer arms

Alkyl chain

Real risk of unspecific interactions between spacer and target molecule

Hydrophilic chain

Risk of unspecific interactions greatly reduced

Best choics

binding sites. Using a gel with pre-attached spacer arms will leave some uncoupled spacers, increasing the possibility of non-specific interactions. The unused spacer arms should not be too much of a problem if they are hydrophilic. If available, this problem may be eliminated by using a ligand with a pre-attached spacer arm.

Choosing a coupling group

Ligands are coupled to the matrix via reactive groups

Amino -NH₂

Hydroxyl -OH

Aldehyde -CHO

Thiol -SH

Carboxyl -COOH

Coupling must allow a free binding site

Useful Coupling Methods

Coupling chemistry	Kinds of group coupled	<u>Ligand</u>
N-hydroxysuccinimide	-NH ₂	Protein ,Peptide. Sugar.Polynucleotide.Cofactor
CNBr	-NH ₂	Protein , Sugar.Polynucleotide.Cofactor
Carbodiimide	-NH ₂ via hydrophilic spacer arm	Small ligands. Non polar ligand in organic solvents. Derivatized material
Epoxide	-SH-NH ₂ -OH via hydrophilic spacer arm	Sugars. Small ligands
Thiol exchange	-SH Mild Conditions	Protein ,Peptide. Polynucleotide Low MW thiol containig ligand

Useful Coupling Methods

Cyanogen bromide activation

Gel
$$\stackrel{\bullet}{\mathsf{Gel}}$$
 $\stackrel{\bullet}{\mathsf{Gel}}$ $\stackrel{\bullet}{\mathsf{C}}=\mathsf{N}$ $\stackrel{\bullet}{\mathsf{H}}$ $\stackrel{\bullet}{\mathsf{Br}}$ $\stackrel{\bullet}{\mathsf{Gel}}$ $\stackrel{\bullet}{\mathsf{C}}=\mathsf{N}$ $\stackrel{\bullet}{\mathsf{H}}$ $\stackrel{\bullet}{\mathsf{H}}$ $\stackrel{\bullet}{\mathsf{Br}}$ $\stackrel{\bullet}{\mathsf{Gel}}$ $\stackrel{\bullet}{\mathsf{C}}=\mathsf{N}$ $\stackrel{\bullet}{\mathsf{H}}$ $\stackrel{\bullet}{\mathsf{H}}$ $\stackrel{\bullet}{\mathsf{Br}}$ $\stackrel{\bullet}{\mathsf{Gel}}$ $\stackrel{\bullet}{\mathsf{C}}=\mathsf{N}$ $\stackrel{\bullet}{\mathsf{H}}$ $\stackrel{\bullet}{\mathsf{H}}$ $\stackrel{\bullet}{\mathsf{H}}$ $\stackrel{\bullet}{\mathsf{Br}}$ $\stackrel{\bullet}{\mathsf{C}}=\mathsf{N}$ $\stackrel{\bullet}{$

Cyanogen bromide coupling

Gel
$$O \subset N$$
 + Lig $O \subset N$ + Lig $O \subset N$ Lig $O \subset N$ Lig $O \subset N$ NH N-substituted isourea

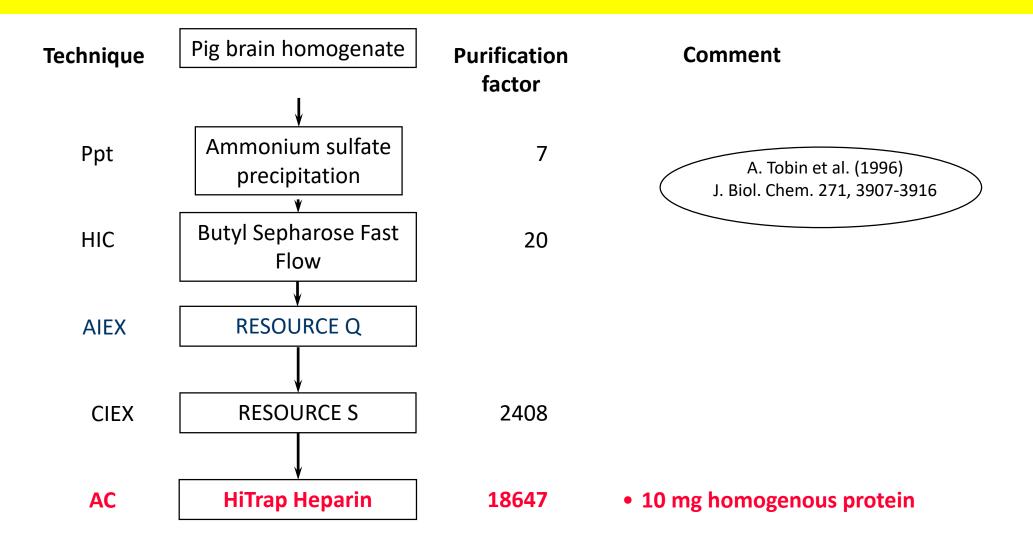
Reaction at pH 8. Isourea may be cleaved by nucleophilic attack at high pH.

Multiple bonds formed with protein ligands. No spacer arm present.

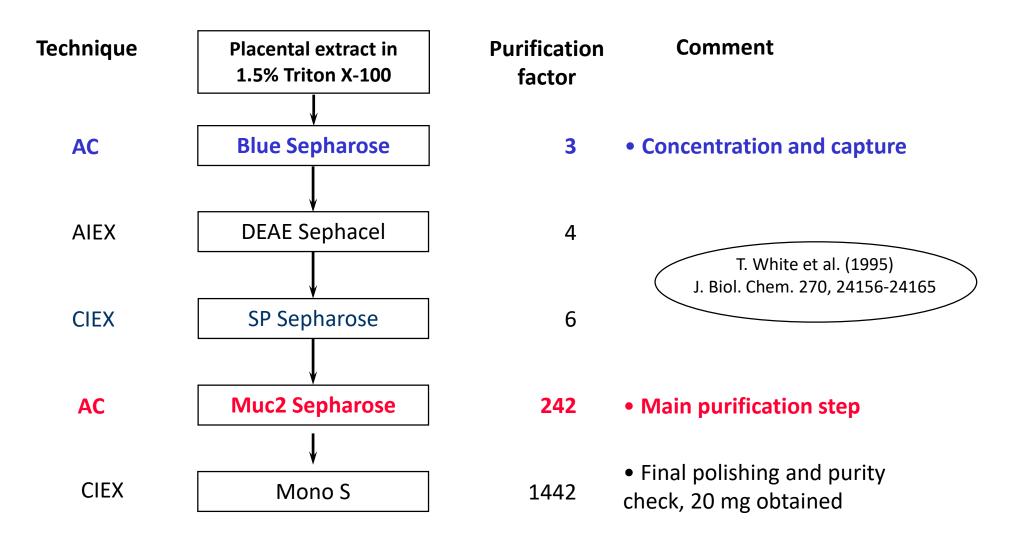
WARNING!: Cyanogen bromide is dangerous. Consult safety data before start working

A general protocol for ligand coupling

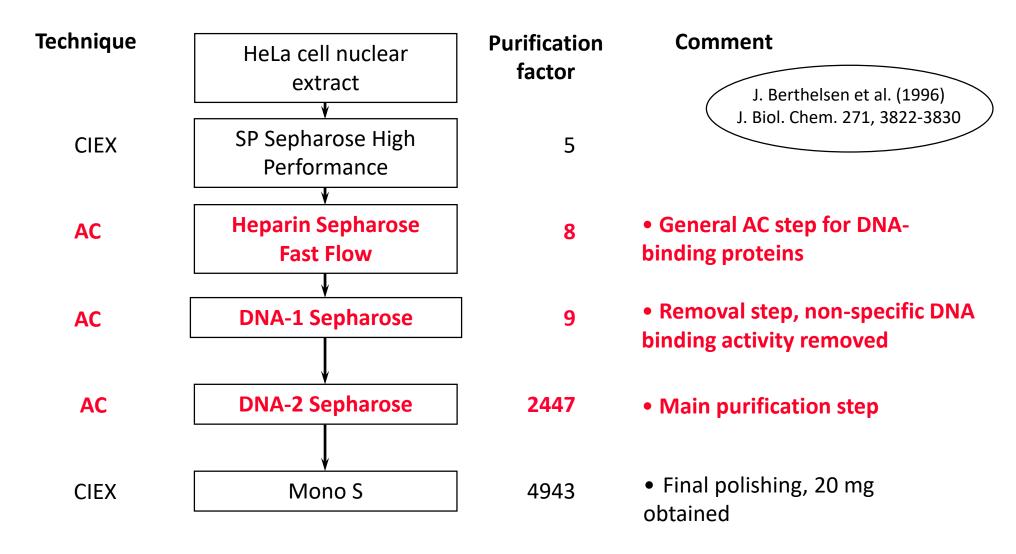
- Prepare the ligand solution in coupling buffer
- Prepare the activated matrix
- Mix the ligand solution and the activated gel in coupling buffer until coupling is complete
- Check total ligand before and after coupling: ligand/ml resin
- ➤ Block any remaining active groups
- Wash the coupled gel alternately at high and low pH to remove adsorbed ligand
- > Transfer to storage buffer


Tips: Preparing the activated matrix - couple buffer

- > If the activated matrix is freeze-dried, allow it to swell before washing
- > Always use the recommended swelling and washing solutions!
- The swelling, washing and equilibration are best performed on a sintered glass filter. Facilitates quickly removal of excess liquid from the media
- Couple buffer: make sure there are no components, e.g. amines, that can couple in place of the ligand, e.g. Tris buffer has a primary amine
- To suppress ionic adsorption, add NaCl, 0.5 M.
- > pH is important. Always use the recommended pH.

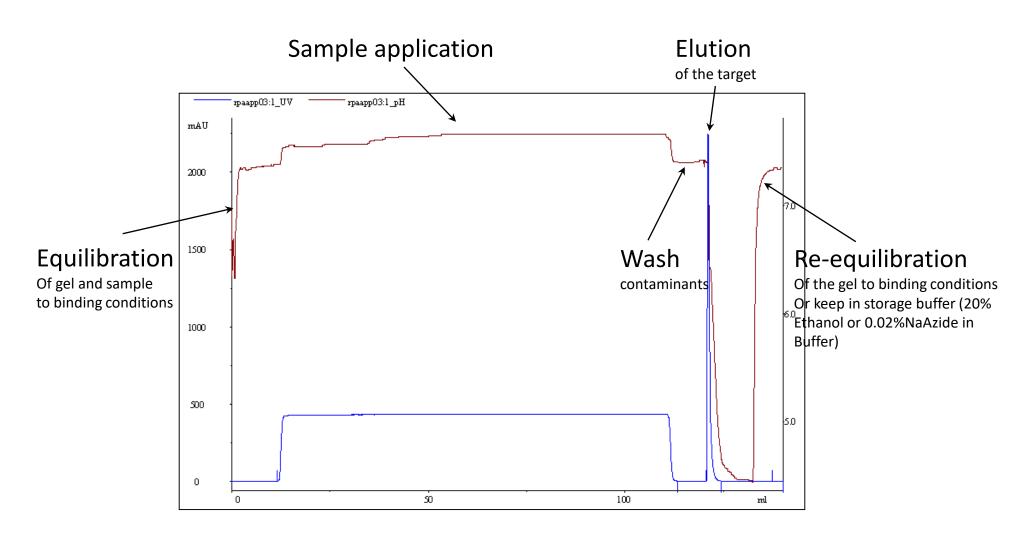

Tips: Coupling reaction, washing and storage

- > Ligands which are poorly soluble in water, may usually be added in an organic solvent.
- The ligand should be available at a high level of purity. Any contaminants present in the ligand sample will likely be coupled to the matrix.
- ➤ Mix the activated gel and the ligand solution by swirling or end-over-end mixing **Avoid**magnetic stirrers as these can crush the gel and produce fines!!
- > Take samples of ligand before and after reaction: to calculate ligand per ml resin
- > Time and temperature according to standard protocols. Most coupling reactions are performed at room temperature
- ➤ Block any remaining active groups with a small neutral ligand (Tris buffer for amino reactions)
- Wash the coupled gel at alternating high and low pH to remove adsorbed substances.
- ➤ Keep in storage buffer (Na Azide , Thimerosol 0.02% or ethanol if possible)


G Protein Receptor Kinase

Membrane Protein

DNA-binding Protein



Advantages and Disadvantages of affinity chromatography

- Easy to achieve otherwise difficult separations
- Often high purity in one step (but not always)
- Relatively fast separations
 (according to kinetics of binding and elution)
- Can be use to remove specific contaminants

- Buffer / elution limitations:
 Sometimes needs harsh or denaturizing elution conditions
 - Very expensive elution conditions
- Economics (scale-up):
 - Ligand stability affects life-time of affinity resins
 - Some ligands are very expensive
- Do not resolve all the problems

The main stages in affinity chromatography

Columns and equipment

- > Column volume: according to amount of target and gel capacity
- ➤ Avoid using excess of resin: to avoid low affinity binding of impurities. Use maximum capacity of the column.
- > Column length: not usually critical, short and wide
- > Equipment: no special demands
- ➤ Equilibrate column before applying sample and follow standard protocol

Sample preparation

Tips

- Adjust pH, buffer salts and additives to promote binding
- > Filter or centrifuge to remove particles
- Make sure that components known to interfere with binding are absent
- > Consider alternative <u>capture</u> step before affinity purification

Eliminates crude impurities or interfering substances

IEX or HIC columns are cheaper, with higher dynamic capacity and quickly concentrate lysates

Prolongs resin half life (reduce cost)

Sample application

- ➤ Binding buffer: usually neutral pH, and high salt concentration when is possible (0.3-0.5M NaCl) to avoid hydrophobic interactions of non specific proteins to the resin. Use additives only if necessary.
- > Loading directly on column
 - Strong affinity and fast binding: High flow rate
 - Weak affinity and/or slow binding: Low flow rate

Kinetics of adsorption and desorption Unexpected results

Slow binding

Some targets do not completely bind to the resin: very low dynamic binding capacity

Open columns: slow down binding. Stopped flow binding to bind the target in portions <u>or</u> rebind several times

For batch binding, incubation of around 1.5 hours at 4°C is enough. For extremely slow binding kinetics, incubate overnight at 4°C. *Very gentle stirring*

Binding on FPLC column: adjust flow rate to get loading in ~90min

Slow desorption

If target elutes as a long, low 'peak', reduce elution flow-rate

Open columns: Stopped flow elution to elute the target in pulses. Change elution scheme

Elution of FPLC column: extremely slow elution in order to get narrow peaks

Washing, elution and re equilibration

- Follow standard protocol
- Optimize alternative wash strategies to increase final purity (high salt, detergents, others)
- If eluting at extreme pH: collect the target protein in a small amount of concentrated buffer at a neutralizing pH
- Re-equilibrate column immediately with binding or storage buffer
- Regeneration: use buffers that do not harm the ligand

Column Regeneration

- Wash with basic and acidic buffers.
 - 10 col. vol. 0.1 M Tris.HCl, 0.5 M NaCl, pH 8.5
 - 10 col. vol. 0.1 M NaAc, 0.5 M NaCl, pH 4.5
 - Use chaotropic agents or detergents if needed
- > Re-equilibrate with 10 column volumes starting buffer. Use more if needed
- ➤ Ni columns can be washed with 0.5N NaOH, neutralized, destriped with 100mM neutral EDTA, wash, charge with 100mM Ni SO₄, wash and store with 20% Ethanol

Column Storage

- > To maximize the useful lifetime of an affinity resin, choose a storage buffer that does not harm the ligand
- > Typical buffers are 20% ethanol solution or binding buffer containing a bacteriostatic agent (e.g. 0.02% Thimerosal or 0.02% sodium azide)
- > Resins with strong and stable ligands can be used hundreds of times

Affinity Chromatography (AC)

- Principles of AC
- Main stages in Chromatography
- How to prepare Affinity gel Ligand Immobilization Spacer arms –
 Coupling methods Coupling tips
- Types of AC
- Elution Conditions
- Binding equilibrium, competitive elution, kinetics
- Industrial Examples: Protein A/G for Therapeutic proteins
- Future Considerations

Type of Affinities

Mono-specific ligands

- Specific for a single substance
 - Antigen antibody
 - Hormone receptor
- Usually home-made gels
- Elution scheme must be worked out for each case:
- Often general elution
- Little help from the literature

Group-specific ligands

- Specific for a group of structurally
- or functionally similar substances:

Lectirs gycoproteins

Protein G IgG antibodies

Dye-stut's enzymes

- Often ready-made gels
- Known elution schemes
- Standard tested elution protocols
- Often competitive elution

Group-specific ligands - 1

Ligand Specificity

Protein A Fc region of IgG

Protein G Fc region of IgG

Concanavalin A Glucopyranosyl & Mannopyranosyl groups

Peanut Lectin Terminal galactose group

Cibacron Blue Broad range of enzymes, serum albumin

Procion Red NADP⁺ dependent enzymes

Lysine Plasminogen, ribosomal RNA

Group-specific ligands - 2

Ligand Specificity

Arginine Serine proteases

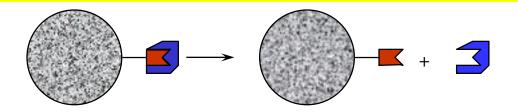
Benzamidine Serine proteases

Calmodulin Proteins regulated by calmodulin

Heparin Coagulation factors, lipoproteins, lipases,

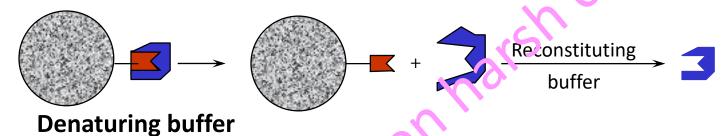
hormones, steroid receptors, protein synthesis

factors, Nucleic acid-binding enzymes


Proteins and peptides which contain 6-12 His

Metal chelate resins (Co. Ni. Zn. Cu. Fe)

Designing the elution scheme


- > General elution conditions
 - Low pH, salt, GuHCl, Urea etc.
 - Often harsh conditions
- > Specific eluents
 - Competing free ligand
 - Competing binding substances
 - Sometimes expensive compounds (like peptides)

General elution conditions

Changing buffer conditions

- ➤ Usually decrease pH or increase ionic strength
- decrease polarity adding up to 10 % dioxane or up to 50 % ethylene glycol

Usually extremes of pH or chaotropic agents

- There are no guaranteed general elution methods in affinity chromatography
- > Low pH, e.g. glycine HCl, pH 2.8, is the closest approach

General elution conditions

- pH
- 100 mM glycine HCl, pH 2.5-3.0
- 100 mM citric acid, pH 3.0
- 50-100 mM triethylamine or triethanolamine, pH 11.5
- 150 mM ammonium hydroxide, pH 10.5
- Ionic strength and/or chaotropic effects
- 3.5-4.0 M magnesium chloride, pH 7.0 in 10 mM Tris
- 5 M lithium chloride in 10 mM phosphate buffer, pH 7.2
- 3.0 M Potassium chloride
- 2.5 M sodium iodide, pH 7.5
- 0.2-3.0 sodium thiocyanate
- Denaturing
- 2-6 M guanidine HCl
- 2-8 M urea
- 1% deoxycholate
- 1 % SDS
- Organic
- 10% dioxane
- 50% ethylene glycol, pH 8-11.5 (also chaotropic)
- Competitor
- >0.1 M counter ligand or analog

- Felution conditions are intended to break the ionic, hydrophobic and hydrogen bonds that hold the ligand and the target together
- Successful eluting conditions will be dependent upon the specific ligand-target interaction that is occurring.
- ➤ Ideally, an elution condition effectively
 releases the target without causing
 permanent damage, but all eluting
 conditions result in some loss of functionality
- ➤ Empirical evidence is needed to determine which elution condition is the best.

 34

Elution at Low pH IgG antibodies on rProtein A Sepharose

➤ Column: HiTrap rProtein A

➤ Binding: 20 mM sodium phosphate, pH 7.0

➤ Elution: 0.1 M glycine HCl, pH 3

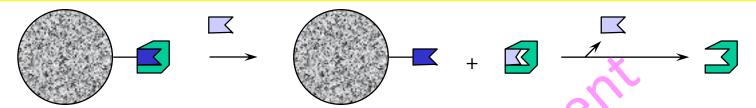
Check for stabilizing elution conditions: slightly higher pH, stabilizing additives as Arginine, kosmotropic salts, etc

Note: Collect IgG into a small volume of strong buffer

(1M pH 7.5), to preserve its antibody activity.

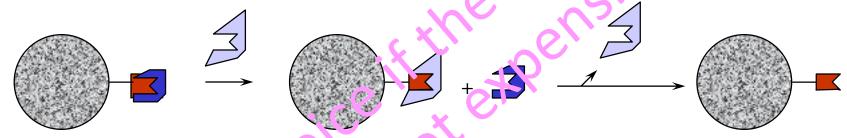
Elution at High salt concentration DNA-binding proteins on Heparin Sepharose

➤ Column: HiTrap Heparin


➤ Binding: 20 mM Tris-HCl, pH 8, 0.5 M NaCl

➤ Elution: Binding buffer + 1 to 2 M NaCl

Heparin Sepharose behavior is similar to CEIX


Consider use of CEIX

Specific eluents

Competing ligand in solution

Elution of enzymes from Blue Sepharose by free NADH
Glutathione elution of GST fusion protein from Glutathione-Agarose columns

Competing binding substance in contion

Elution of glycoproteins from Con A Sepharone by a-D-methylmannoside Elution of 6His-Proteins from chelating columns (Ni-NTA) with Imidazole Elution of Antigens from Entipody columns with specific peptides

- > Competitive soluble ligands or binding substances can elute the bound target specifically
- > Are usually far more gentle than general methods
- > But sometimes could be very expensive (like specific peptides for antigen elution) 37

Lectins

Lectin Specificity Lectins are proteins Concanavalin A α -mannose, α -glucose which bind well-defined Glycine Max (soybean) N-Acetyl Galactosamine sugar residues of α-L-fucose Ulex Europaeus I polysaccharides, Wheat germ lectin N-Acetyl Glucosamine & NeuNAc glycoproteins, etc Peanut lectin α-mannose Ricinus Communis, RCA 120 **ß-Galactose** Arachis hypogaea ß-Gal(1->3)GalNAc Elution with competing α-Gal & α Gal NAc Bandeira Simplicifolia, BS-I free binding substance: Maackia amurensis Sialic acid sugar Lymulus polyphemus NeuNAc 38

Dye-stuffs

Many dye-stuffs mimic binding sites of natural biologically active molecules **Elution with High Salt**

	TCC	
1)\	e-stuff	
	Cotan	

Sites recognised

Cibacron Blue 3G-A NADH-binding and similar

Procion Red

NADPH-binding and similar

- The structural analogies are not exact.
- > Related structures are also recognized.
- ➤ Blue Sepharose also binds serum albumin.

Binding equilibrium

At equilibrium

$$K_{D} = \frac{[L][T]}{[LT]}$$

K_D is the equilibrium dissociation constant,
[L] is the concentration of free ligand
[T] is the concentration of free target
[LT] is the concentration of the ligand/target complex

Binding equilibrium

It can be shown* that

$$\frac{Bound\ target}{Total\ target} \approx \frac{L_{\scriptscriptstyle 0}}{K_{\scriptscriptstyle D}+L_{\scriptscriptstyle 0}}$$

 K_D is the equilibrium dissociation constant, L_0 is the concentration of ligand, usually 10^{-4} - 10^{-2} M

For good binding, K_D should be at least two orders of magnitude less than L_0 , i.e. 10^{-6} - 10^{-4} M

^{*}Graves, DJ, Wu, YT Meth. Enzymol 34 (1974) 140-163

Binding equilibria

We can change K_D by changing pH, temperature, salt concentration *etc.*

L + T
$$\longrightarrow$$
 LT $K_D 10^{-6} - 10^{-4} M$
L + T \longleftarrow LT $K_D 10^{-1} - 10^{-2} M$
Elution

Target elutes as a sharp peak

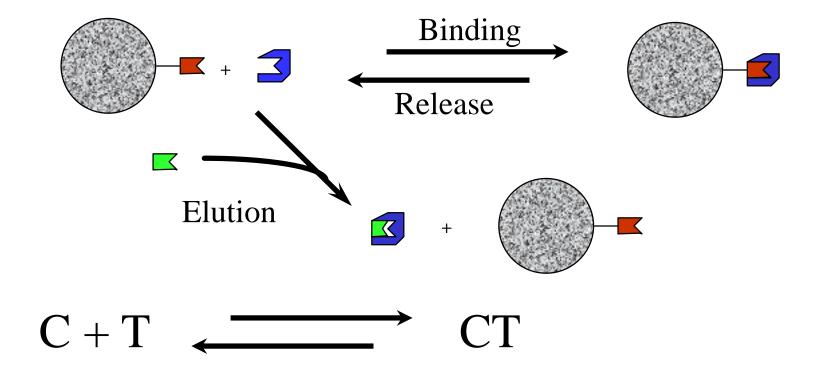
Elution by changing K_D- Unexpected results

K_D too high during binding (low affinity)

Target is retarded as a broad peak and elutes under binding conditions as a broad, low peak

Find better binding conditions or use ligand with higher affinity

K_D not low enough during elution


Target elutes in a long, low 'peak'

Try different elution conditions or use ligand with lower affinity

 \triangleright K_D too low during binding (extremely high affinity)

Difficult to elute target. Difficult or impossible to increase K_D enough to elute the target without destroying its activity

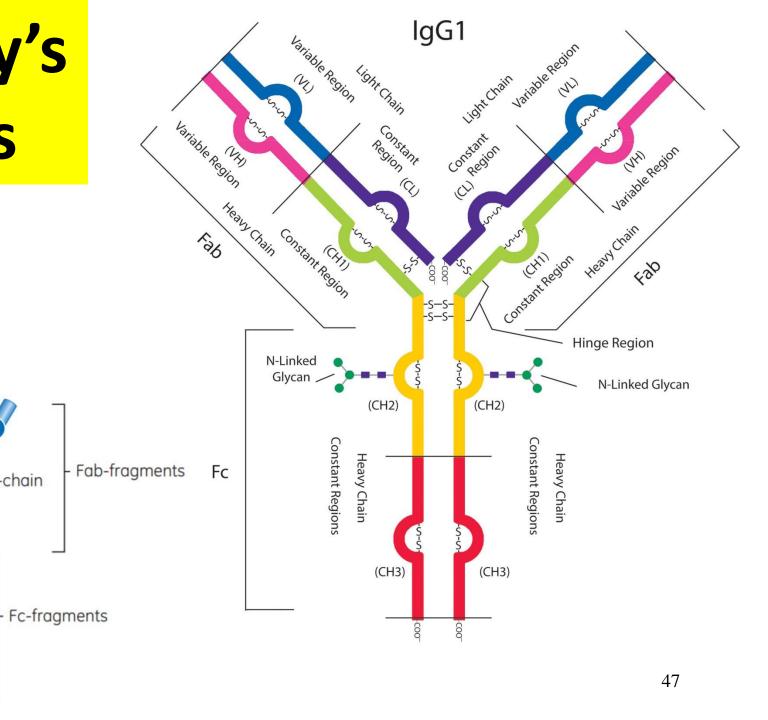
Competitive elution

Binding equilibrium for competing ligand

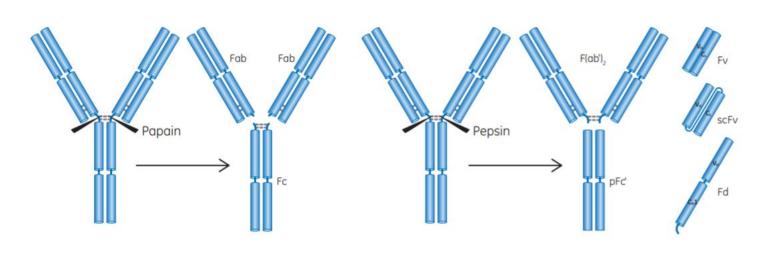
At equilibrium

$$K_{DComp} = \frac{[C][T]}{[CT]}$$

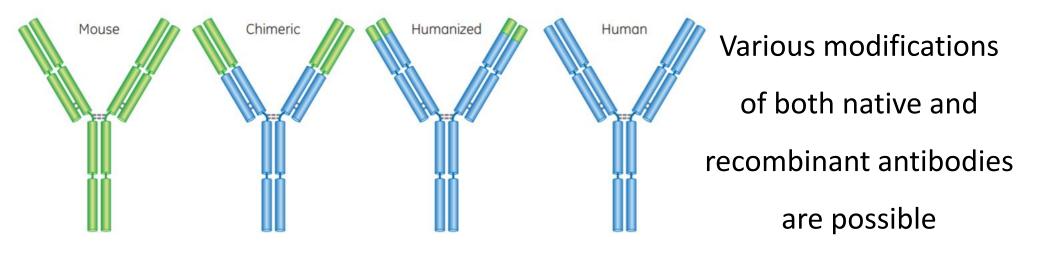
K_{DComp} is the equilibrium dissociation constant
 [C] is the concentration of free competing ligand
 [T] is the concentration of free target
 [CT] is the concentration of the competing ligand/target complex

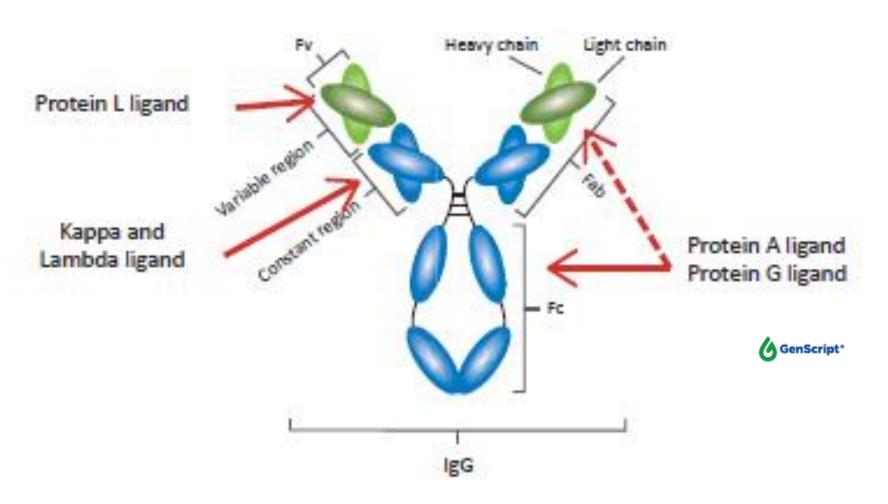

Affinity Chromatography (AC)

- Principles of AC
- Main stages in Chromatography
- How to prepare Affinity gel Ligand Immobilization Spacer arms –
 Coupling methods Coupling tips
- Types of AC
- Elution Conditions
- Binding equilibrium, competitive elution, kinetics
- Industrial Examples: Protein A/G for Therapeutic proteins
- Future Considerations


Antibody's regions

L-chain


H-chain


Enzymatic cleavage of Antibody Recombinant Ab fragments production

Affinity ligands for antibody purification

Protein G and protein A bind to different IgG through the Fc region

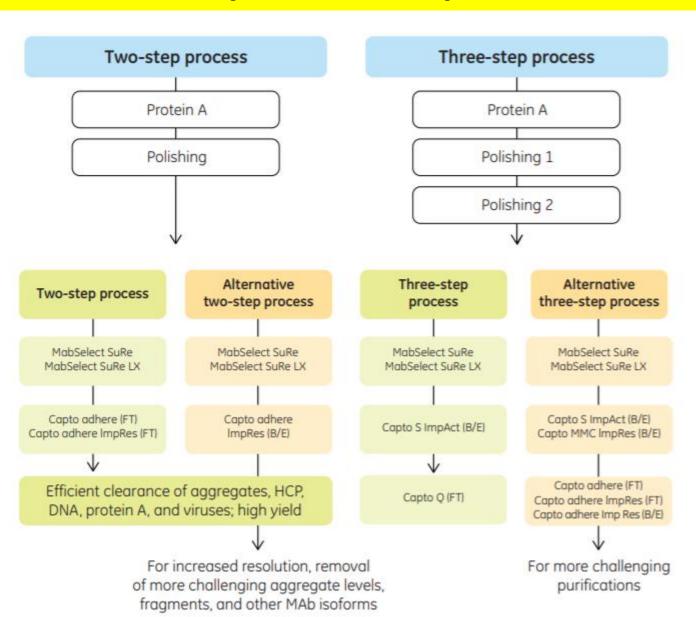
Protein G and protein A are

bacterial proteins from

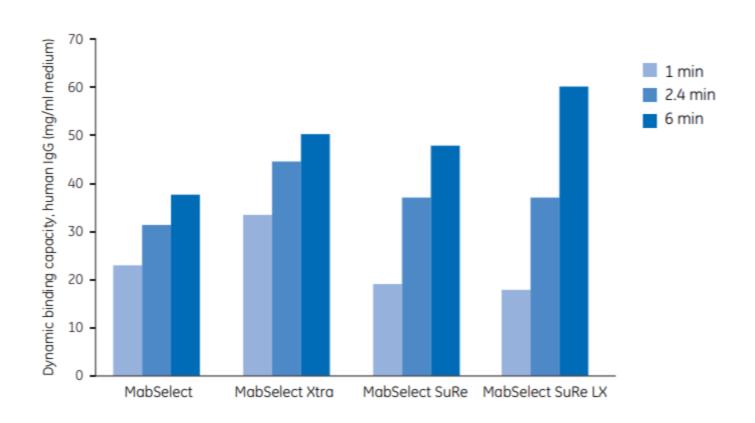
Group G Streptococci and

Staphylococcus aureus,

respectively

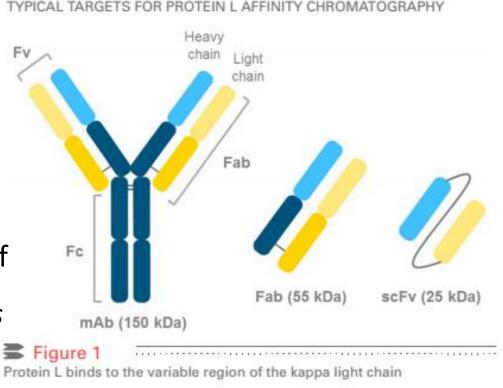


Species	Subclass	Protein G binding	Protein A binding
Human	IgA	_	variable
	lgD	_	_
	IgE	_	_
	IgG ₁	++++	++++
	lgG₂	++++	++++
	IgG ₃	++++	_
	IgG ₄	++++	++++
	IgM*	_	variable
Avian egg yolk	lgY [†]	_	_
Cow		++++	++
Dog		+	++
Goat		++	_
Guinea pig	IgG ₁	++	++++
Hamster		++	+
Horse		++++	++
Koala		+	_
Llama		+	_
Monkey (rhesus)		++++	++++
Mouse	IgG_1	++++	+
	IgG _{2a}	++++	++++
	IgG₂	+++	+++
	IgG_3	+++	++
	IgM*	_	variable
Pig		+++	+++
Rabbit		+++	++++
Rat	IgG_1	+	_
	IgG₂₀	++++	_
	IgG _{2b}	++	_
	IgG_3	++	+
Sheep		++	+/—


Overview of different combinations of chromatography unit operations in a MAb purification process

Removal of specific contaminants after initial purification

- Bovine immunoglobulins
- Albumin and transferrin
- α2 -macroglobulin and
- haptoglobulin
- DNA and endotoxins
- Dimers and aggregates
- Host cell proteins (HCP)
- Virus

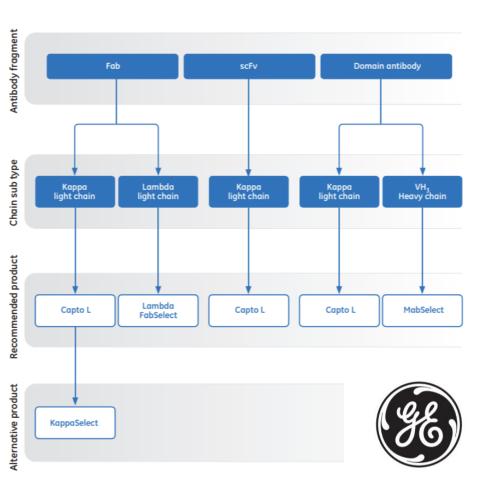


Dynamic binding capacity of MAb at various residence times

Protein L binds to the variable region of the kappa light chain

- ✓ It can be used to purify intact immunoglobulins conventional Fabs
 chain variable fragments (scFvs)
- ✓ Was first isolated from the surface of bacterial species *Peptostreptococcus magnus*

✓ Immunoglobulins whose Fc region is not easily accessible for Protein A, such as IgM or IgA.



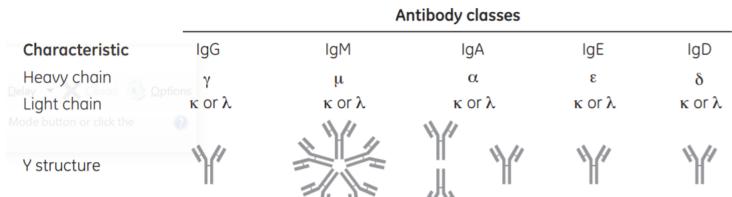
Protein L binding affinities

De Chateau, M. et al.

On the interaction between protein L and immunoglobulins of various mammalian species.

Scand. J. Immunol. 37, 399-405 (1993).

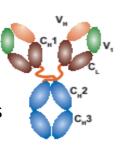


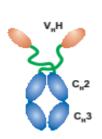

Species	Antibody class	Affinity†
General	Kappa light chain (subtypes 1,3,4)	Strong
	Lambda light chain	No binding
	Heavy chain	No binding
	Fab	Strong
	ScFv	Strong
	Dab	Strong
Human	IgG_1	Strong
	IgG ₂	Strong
	IgG ₃	Strong
	IgG ₄	Strong
	IgA	Strong
	IgD	Strong
	IgE	Strong
	IgM	Strong
Mouse	IgG_1	Strong
	IgG _{2a}	Strong
	IgG _{2b}	Strong
	IgG ₃	Strong
	IgM	Strong
Rat	IgG_1	Strong
	IgG _{2a}	Strong
	IgG _{2b}	Strong
	IgG _{2c}	Strong
Pig	Total IgG	Strong
Dog	Total IgG	Weak
Cow	IgG_1	No binding
	IgG ₂	No binding
Goat	IgG ₁	No binding
	IgG ₂	No binding
Sheep	IgG ₁	No binding
	IgG ₂	No binding
Chicken	Total IgG	No binding

Design of a new Affinity Chromatography Parameters to consider

- Ligand that binds to the resin covalently and keeps the interaction site free
- Low leakiness of the ligand
- Stability of the ligand to proteases, and to classical regeneration conditions: 0.5N NaOH treatment, urea or GuHCl
- High specificity of the ligand
- But easy release of the target by non-denaturative conditions
- Cheap elution conditions
- Cheap production of the ligand

Single domain antibodies (sdAb) Five major classes of Immunoglobulin



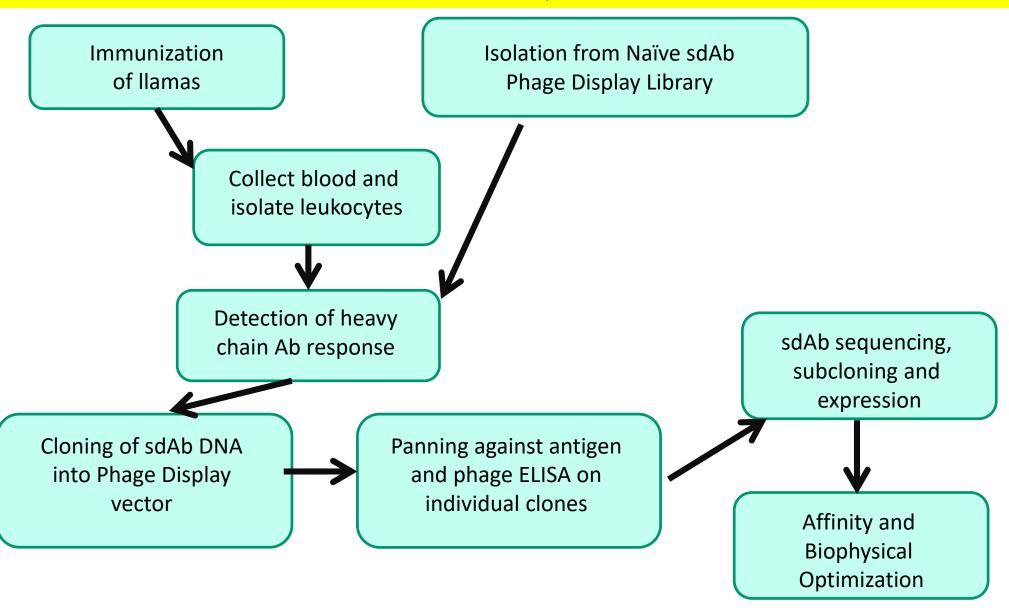

Advantages of target specific sdAb

www.GenScript.com

of two heavy chains and two light chains. Variable regions o both chains contribute to antigen binding.

Camelids produce antibodies composed of only two heavy chains, called heavy chain antibody (HCAb).

Single domain antibodies (sdAb)
consist of only the variable region of
HCAb, since it is the sole region
responsible for binding. These are
called VHH fragments



 $V_{\mu}H$

- sdAb) retain all the function of conventional IgGs despite
 lacking the VI binding region
- Use only the V_H H fragment for binding
- Benefits: 1/10 the size of convention IgGs, ~13 kDa vs
 ~150 kDa
- Readily amenable to downstream engineering such as humanization
- Access to hidden epitopes
- Better penetration into solid tissue
- Ability to cross the blood brain barrier
- High pH and temperature stability:
- Permits alternate routes of administration (i.e. oral)
- Use in other extreme environments (biosensors)
- Use as a ligand for affinity resins

Workflow for generating an sdAb target specific

www.GenScript.com

Camelid derived single domain antibody fragments

BAC (BioAffinity Company) - Capture Select® (GE)

- Custom designed ligands (12-15kDa)
- Produced in Saccharomyces cerevisiae, enabling high level production with minimal purification effort as well as easy scale-up.
- Stability, affinity, and selectivity
- Reduction of process steps: higher yields, reduced costs
- Selectivity: high purity in single step / feed stock independent
- Mild elution conditions: retaining biological activity of target
- Efficient clearance of HCP, DNA, virus: high selectivity in capture step

- Capture Select human IgA
- •CaptureSelect IgM directed towards a unique domain on the Fc part of IgM
- CaptureSelect Fab kappa: enable
- purification of human IgG, IgA, IgM, and IgE.
- CaptureSelect Fab lambda: enable
- purification of human IgG, IgA, IgM, and IgE.
- •CaptureSelect Human IgG4 : enables
- purification of human IgG4's without cross
- reactivity with human IgG from subclasses 1,
- 2, and 3

DARPins (Designed Ankyrin Repeat Proteins)

An Innovative High-Throughput Platform for Next-Generation Binder Discovery University of Zurich, Switzerland - Prof. Dr. Andreas Plückthun – Dr. Jonas Schaefer

✓ Designed Ankyrin Repeat Proteins (DARPins) against different epitopes on a variety of

targets

- small (~170 aa), very stable repeat proteins
- recognize structural 3D-epitopes
- work intracellularly (no Cys)
- available in flexible formats / modifications

✓ Ankyrin repeat is a 33 residue motif
in proteins consisting of two alpha helices separated

- ✓ Domains consisting of ankyrin repeats mediate protein-protein interactions and are among the most common structural motifs in known proteins
- ✓ Provide monomeric binders that specifically recognize different, non-overlapping epitopes with high affinities

by loops

- ✓ HT Ribosome Display (RD) enables selection against 94 targets in parallel
- ✓ High-Throughput Screenings allow to identify best suited DARPin binders

Mimetic Ligand™ Affinity Chromatography

Synthetically "mimicking" and enhancing the natural molecular affinity of binding ligands toward targeted biomolecules <u>www.prometic.com</u>

- Biologically inert
- very strong
- excellent liquid flow properties
- resistant to most chemical treatments
- stable in the pH range 2 14
- can be treated with denaturants (8M urea), detergents (Triton, SDS)
- can be sterilized by autoclaving.
- Capacities can exceed 50mg protein per ml of packed gel. Low Ligand Leakage
- Alkali-stable adsorbents Enables cleaning, sterilization and depyrogenation with 1M sodium hydroxide, ensuring long operational lifetimes.
- Albumin Proteases Blood Proteins Oxidases Dehydrogenases Ligases Kinases Antibodies
 Nucleases Cytokines
- Custom Media Development Programs
- ➤ Chemical Combinatorial Library[™], + with a rational ligand design approach

Scil Proteins: Affilin™ Techology

- Novel human binding proteins for therapy and applications in chromatography.
- ➤ Affilin[™] molecules are small non-immunoglobulin proteins which are designed for specific binding of proteins and small molecules.
- New Affilin™ molecules can be quickly selected from libraries which are based on two different human derived scaffold proteins: Gamma crystalline, a human structural eye lens protein and Ubiquitin one of the highest conserved proteins known
- Small scaffolds
- High temperature stability
- Almost resistant to pH changes and denaturing agents.
- Created by engineering the protein surfaces through a locally defined randomization of exposed amino acids
- > Can be easily produced in the cytoplasm of *E. coli*

Scaffold name/ technology	Scaffold struct with randomiz residues	Parent protein	Origin of parent protein	Residues/ S-S bridges	Structure (PDB code)	Randomization	Selection method	Refs/Company
Atrimer/ Tetranectin	Wing.	C-type lectin domain CTLD ₃	Human	n × 40/ 3 S–S	Five flexible loops (1TN3)	11 residues	Phage display	[13] Anaphore
Avimer/ Maxibody	U.S.	Multimerized LDLR-A module	Human/artificial (consensus design)	n × ~43/3 S−S + Ca ²⁺	Four loops (1AJJ)	28 residues	Phage display	[12] Amgen
Centyrin		Fn3 domains of hTenascin C (Tencon)	Human	89/0	β-Sheet (3TES)	13 residues	CIS display, phage display	[84]
DARPin	<i>સ્ટુટ</i> ું કુ	Ankyrin repeat proteins	Human/artificial (consensus design)	67 + n × 33/0	α_2/β_2 repeated (4JB8	Seven residues in each n- repeat (original library)	Ribosome display, phage display	[67,85] Molecular Partners
DARPin	28488	Ankyrin repeat proteins	Human/artificial (consensus design)	67 + n × 33/0	α ₂ /β ₂ repeated (4JB8)	Eight residues in each n- repeat (reduced hydrophobicity library)	Ribosome display	[86]
DARPin	100 m	Ankyrin repeat proteins	Human/artificial (consensus design)	67 + n × 33 (57)/0	α_2/β_2 repeated (4K5C)	Additional 13 residues in elongated loop (Loop DARPin library)	Ribosome display	[87]
Fynomer	ZZ.	SH3 domain of the human Fyn tyrosine kinase	Human	63/0	β-Sandwich (4AFQ)	Six residues in two loops (RT- and n-Src-loop)	Phage display, DNA display	[14] Covagen
Kunitz domain	4	BPTI/LACI-D1/ITI-D2/APPI	Human	58/3 S-S	α-Helices, β-sheets (1ZR0)	1–2 loops	Phage display	DYAX
Obody/ OB-fold	M.	OB-fold of the aspartyl tRNA synthetase	Archaea Pyrobaculum aerophilum	111/0	Five-stranded β-barrel (4GLA)	17 residues	Phage display	[88]
Pronectin	Y	14th extracellular domain of human fibronectin III	Human	90-95/0	Two β-sheets and three surface-exposed loops (3R8Q)	Three loops (BC, DE, FG loops)	Phage display	Protelica
Repebody	A William	Leucine-rich repeat (LRR) modules of variable lymphocyte receptors (VLRs)	Jawless vertebrates artificial (consensus design)	170 + n × 20-29/0	β-Strand turn α-helix (4J4L)	Five residues in each LRR	Phage display	[89]

Non-immunoglobulin scaffolds: a focus on their targets

Katja Skrlec et al. Trends in Biotechnology July 2015, Vol. 33, No. 7

Scaffold name/ technology	Scaffold structure with randomization residues	Parent protein	Origin of parent protein	Residues/ S-S bridges	Structure (PDB code)	Randomization	Selection method	Refs/Company
ABD	Ton Barrier	Albumin-binding domain	Bacterial	46/0	Thee α-helices (1GJT)	15 surface residues	Phage display, ribosome display	[77]
Adhiron		Phytocystatin protein	Plant	~100/0	Four-strand antiparallel β-sheet core with a central helix (4N6T)	Insertion of two variable peptide regions	Phage display	[78]
Adnectin/ Monobody	Ø	10th domain of human fibronectin	Human	94/0	β-Sandwich of seven β- sheets (3RZW)	Residues in BC, DE, and FG loops (loop only library)	Phage display, mRNA display, yeast-two-hybrid	[30] Adnexus Therapeutics
Adnectin/ Monobody	W.	10th domain of human fibronectin	Human	94/0	β-Sandwich of seven β- sheets (3UYO)	Residues in C and D β- sheets, and DE and FG loops (side and loop library)	Phage and yeast display	[79]
Affibody	46	Z-domain of staphylococcal protein A	Bacterial	58/0	Three α-helices (1LP1)	13 residues in two helices	Phage display, ribosome display	[45] Affibody AB
Affilin	W W	γ-B-crystallin	Human	176/0	β-Sheet (2JDG)	Eight residues	Phage display	[80] SCIL Proteins
Affilin	%	Ubiquitin	Human	76/0	α/β (1UBI)	Six residues in the β -sheet	Ribosome display	[81] SCIL Proteins
Affimer		Protease inhibitor Stefin A	Human	98/0	Three-fold clustering (1NB5)	12-36 residues	Phage display, yeast-two-hybrid, CIS display	[82] Avacta Life Sciences
Affitin/ Nanofitin	No.	DNA-binding protein Sac7d	Archaea	66/0	Five-stranded incomplete β-barrel (4CJ2)	14 residues located in the $\beta\text{-sheet}$	Ribosome display	[83]
Alphabody	-former- unitiese-	Triple antiparallel helices	Artificial (de novo design)	70–100/0	Three α-helices (40E8)	11 residues (A and C helix)	Phage display	[31] Complix
Anticalin		Lipocalins	Human/ insect	160–180/ 0–2 S–S	Eight-stranded β-barrel (4GH7)	Four loops (up to 24 aa)	Phage display	[28] Pieris AG
Armadillo repeat proteins		Armadillo (homologous to β-catenin)	Various/artificial (consensus design)	<i>n</i> × ∼40/0	Three α-helices (4DB6)	Six residues in each internal repeat	Ribosome display	[79]

Charge-Variant Profiling of Biopharmaceuticals

LCGC NORTH AMERICA VOLUME 36 NUMBER 1 JANUARY 2018

Jared R. Auclair, Anurag Rathore, and Ira Krull

Y. Du, A. Walsh, R. Ehrick, W. Xu, K. May, and H. Liu, mAbs 4(5), 578–585 (2012).

The term <u>acidic species</u> refers to a negatively charged species; using cation exchange these variants are eluted before the main peak, and when using anion exchange they are eluted after the main peak

The term <u>basic species</u> refers to positively charged species; using cation exchange HPLC, these variants are eluted after the main peak, and when using anion exchange these variants are eluted before the main peak.

Acidic species and Basic species

Y. Du, A. Walsh, R. Ehrick, W. Xu, K. May, and H. Liu, mAbs 4(5), 578–585 (2012)

- Sialic acid
- Deamidation
- Nonclassical disulfide linkage
- Trisulfide bonds
- High mannose
- Thiosulfide modification
- Glycation
- Modification by maleuric acid
- Cysteinylation
- Reduced disulfide bonds
- Nonreduced species
- Fragments

- C-terminal Lys
- N-terminal Glu
- Isomerization of Asp
- Succinimide
- Met oxidation
- Amidation
- Incomplete disulfide bonds
- Incomplete removal of leader sequence
- Mutation from Ser to Arg
- Aglycosylation
- Fragments
- Aggregates

Bispecific Antibodies

Bispecific Antibodies Close in on CancerMarianne Guenot, GEN Exclusives February 27, 2017

- Bispecific antibodies are products of genetic engineering that allow one antibody-like molecule to bind several different antigens at once
- In December 2014, for the first time, a bispecific antibody, blinatumomab (Blincyto[©]), was approved for therapeutic use.
- Amgen's blinatumomab, is a molecule composed of the single-chain variable region (scFv) of one antibody targeting the T-cell activating molecule CD3, linked to another scFv, which binds to the B-cell antigen CD19. In the context of acute lymphoblastic leukemia (ALL), this bispecific antibody brings the T cell's potent cytotoxicity close to the malignant B cells, allowing them to be specifically targeted.
- Since then, over 120 bispecific molecules have entered the clinical pipeline
- Global market for 2024 is estimated to hit a staggering \$5.8 billion annually, Research and Markets report ("Bispecific Antibody Therapeutics Market, 2014–2024").
- Can bring clinical benefits beyond the injection of two monospecific antibodies

What are Biosimilars?

Biosimilars. Are They Ready for Primetime? Gina Battaglia and Leala Thomas — July 12, 2017 — Bioradiations BIORAD

http://www.bioradiations.com/biosimilars-are-they-ready-for-

primetime/?WT.mc_id=170712020560&mkt_tok=eyJpIjoiTUdSaE1XUXpPVE16TVdZMCIsInQiOiJ1VTh4d2RJT1wvcHY5Z0tSckdXQ201VkFmdkUySHZQUGhEY1BoT1A5YVNsbTRBQXpmZk1ZdFVSZ09xUVNadmV6S1EyNE1sUnVvamIEU1JYUEY4MmMxaWlxQUowc1l1VndNQ1hcLzhMdzRWMFZRNkdPbUdKbzROcWFGbE13S05mTmJEIn0%3D#references

✓ A biosimilar is "a product that is highly similar to the reference product despite minor differences in clinically inactive components; and there are no clinically meaningful differences between the biological product and the reference product in terms of the safety, purity, and potency of the product,"

Emanuela Lacana, PhD, Associate Director, Biosimilars and Biologics Policy, Office of Biological Products, CDER, FDA, at the PDA/FDA Joint Regulatory Conference in Washington, DC in September 2016 (Tierney 2016).

- ✓ More simply, it is a biologic that is almost identical to a previously approved biological product, with no clinically meaningful differences in safety or efficacy.
- ✓ Market is expected to grow to US\$11 billion by 2021 from US\$3.4 billion in 2016
- ✓ Key players in the biosimilars market include by Pfizer Inc. (U.S.), Sandoz International GmbH (Germany), Teva

 Pharmaceuticals Industries Ltd. (Israel), Amgen Inc. (U.S.), Biocon Ltd. (India), Dr. Reddy's Laboratories Ltd. (India), F.

 Hoffmann-La Roche Ltd. (Switzerland), Celltrion, Inc. (South Korea), and Samsung Bioepis (South Korea).
- ✓ <u>Currently account for 20% of the global pharmaceutical market</u>.

- √\$2.6 billion to develop a new biologic, and development time of over a decade (Di Masi et al.2016).
- √The European Union approved its first biosimilar in 2006 and leads the global biosimilar market with 35 approved products. In addition, they were the first to develop product-specific development guidelines
- ✓ Biosimilar development requires extensive physicochemical and biological characterization of the reference originator product using multiple analytical techniques to ensure similarity. Based on the results of this characterization, preclinical studies and clinical trials are undertaken to resolve uncertainty about the biosimilarity of the new biosimilar product.
- ✓ The uncertainty about legal issues (for example, patent infringement) and the complex expertise required to synthesize biologics will likely mean that biosimilar development will be limited to large pharmaceutical companies with secure finances and extensive experience.

medicines sold in the US in 2017 will likely be biologics

28%

of the
estimated
\$390B global
pharma
market
will be
made up
of biologics
by 2020

Price of biosimilars vs. name brand biologics

The US healthcare bill will be reduced by biosimilar use through 2020 \$250B

will be saved in Europe with the use of biosimilars through 2020

10 YEARS

average biologic development time

\$2.6 BILLION

cost to produce a biologic 5 YEARS

average biosimilar development time

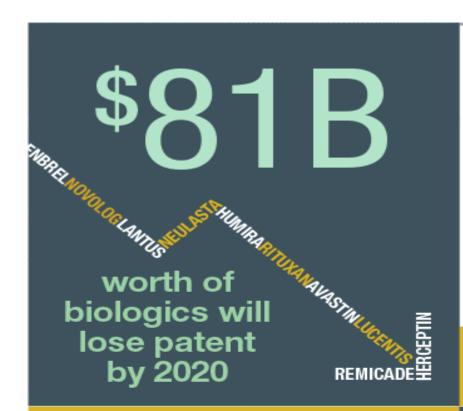
\$100 MILLION

> cost to produce a biosimilar

Biosimilar Product Development

Analytical

Examine the protein's sequence and structure. Note the extent of modifications such as the addition of sugars or additions of higher order structures


Preclinical

Identify physicochemical differences that could impact biological activity using, for example, in-vitro binding assays

Clinical

Confirm the analytical and preclinical data and submit for approval.

APPROVED SIMILAR BIOLOGICS

(not subject to the same rigorous standards):

382 in China since 1995 | 66 in India since 2007

FACTS

The biosimilar market has the potential to disrupt healthcare by exponentially increasing access, providing the highest quality care at the lowest cost.

By 2021, the biosimilar market is expected to grow up to US\$11B.

There are more than 280 biosimilars in the product pipeline. Approximately 32 molecules are targeted by developers.

